Suppression of Shear Banding and Transition to Necking and Homogeneous Flow in Nanoglass Nanopillars

نویسندگان

  • Sara Adibi
  • Paulo S. Branicio
  • Shailendra P. Joshi
چکیده

In order to improve the properties of metallic glasses (MG) a new type of MG structure, composed of nanoscale grains, referred to as nanoglass (NG), has been recently proposed. Here, we use large-scale molecular dynamics (MD) simulations of tensile loading to investigate the deformation and failure mechanisms of Cu64Zr36 NG nanopillars with large, experimentally accessible, 50 nm diameter. Our results reveal NG ductility and failure by necking below the average glassy grain size of 20 nm, in contrast to brittle failure by shear band propagation in MG nanopillars. Moreover, the results predict substantially larger ductility in NG nanopillars compared with previous predictions of MD simulations of bulk NG models with columnar grains. The results, in excellent agreement with experimental data, highlight the substantial enhancement of plasticity induced in experimentally relevant MG samples by the use of nanoglass architectures and point out to exciting novel applications of these materials.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses.

Amorphous metallic alloys, or metallic glasses, are lucrative engineering materials owing to their superior mechanical properties such as high strength and large elastic strain. However, their main drawback is their propensity for highly catastrophic failure through rapid shear banding, significantly undercutting their structural applications. Here, we show that when reduced to 100 nm, Zr-based...

متن کامل

Necking and notch strengthening in metallic glass with symmetric sharp-and-deep notches

Notched metallic glasses (MGs) have received much attention recently due to their intriguing mechanical properties compared to their unnotched counterparts, but so far no fundamental understanding of the correlation between failure behavior and notch depth/sharpness exists. Using molecular dynamics simulations, we report necking and large notch strengthening in MGs with symmetric sharp-and-deep...

متن کامل

The Deformation of Nano-whiskers of Mono-crystalline Copper: Shape Effect, Properties, Shear Banding and Necking

This paper discusses some theoretical aspects in deforming nano-whiskers of monocrystalline copper by uniaxial tension. With the aid of the molecular dynamics analysis, the present study revealed that the behaviour of a nano-whisker is very sensitive to its size, crystal orientation and geometry. The most stable surface is with (111) atomic structure and the most reliable whisker for testing is...

متن کامل

Rheology of Branched Wormlike Micelles

The topology of self-assembled surfactant solutions includes varying degrees of micellar branching, ranging from linear wormlike micelles to a micellar network. Micellar branching acts as an effective attraction between micelles such that network condensation can lead to phase separation. Unlike chemical branching in polymers, micellar branches are labile. Movement of branches along a micelle c...

متن کامل

A Minimal Model for Vorticity and Gradient Banding in Complex Fluids

A general phenomenological reaction-diffusion model for flow-induced phase transitions in complex fluids is presented. The model consists of an equation of motion for a nonconserved composition variable, coupled to a Newtonian stress relations for the reactant and product species. Multivalued reaction terms allow for different homogeneous phases to coexist with each other, resulting in banded c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015